Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Biomolecules & Therapeutics ; : 193-199, 2014.
Article in English | WPRIM | ID: wpr-193044

ABSTRACT

The aim of this study was to determine whether britanin, isolated from the flowers of Inula japonica (Inulae Flos), modulates the generation of allergic inflammatory mediators in activated mast cells. To understand the biological activity of britanin, the authors investigated its effects on the generation of prostaglandin D2 (PGD2), leukotriene C4 (LTC4), and degranulation in IgE/Ag-induced bone marrow-derived mast cells (BMMCs). Britanin dose dependently inhibited degranulation and the generations of PGD2 and LTC4 in BMMCs. Biochemical analyses of IgE/Ag-mediated signaling pathways demonstrated that britanin suppressed the phosphorylation of Syk kinase and multiple downstream signaling processes, including phospholipase Cgamma1 (PLCgamma1)-mediated calcium influx, the activation of mitogen-activated protein kinases (MAPKs; extracellular signal-regulated kinase 1/2, c-Jun NH2-terminal kinase and p38), and the nuclear factor-kappaB (NF-kappaB) pathway. Taken together, the findings of this study suggest britanin suppresses degranulation and eicosanoid generation by inhibiting the Syk-dependent pathway and britanin might be useful for the treatment of allergic inflammatory diseases.


Subject(s)
Calcium , Family Characteristics , Flowers , Inula , Leukotriene C4 , Mast Cells , Mitogen-Activated Protein Kinases , Phospholipases , Phosphorylation , Phosphotransferases , Prostaglandin D2
2.
Immune Network ; : 145-152, 2010.
Article in English | WPRIM | ID: wpr-193640

ABSTRACT

BACKGROUND: The flowers of Inula japonica (Inulae Flos) have long been used in traditional medicine for the treatment of inflammatory diseases. In the present study, we investigated the anti-inflammatory properties of Inulae Flos Extract (IFE). METHODS: The anti-inflammatory effects of IFE against nitric oxide (NO), PGE2, TNF-alpha, and IL-6 release, as well as NF-kappa B and MAP kinase activation were evaluated in RAW 264.7 cells. RESULTS: IFE inhibited the production of NO and the expression of inducible nitric oxide synthase (iNOS) in LPS-stimulated RAW264.7 cells. In addition, IFE reduced the release of pro-inflammatory cytokines, such as TNF-alpha and IL-6. Furthermore, IFE inhibited the NF-kappa B activation induced by LPS, which was associated with the abrogation of I kappa B-alpha degradation and subsequent decreases in nuclear p65 and p50 levels. Moreover, the phosphorylation of ERK, JNK, and p38 MAP kinases in LPS-stimulated RAW 264.7 cells was suppressed by IFE in a dose-dependent manner. CONCLUSION: These results suggest that the anti-inflammation activities of IFE might be attributed to the inhibition of NO, iNOS and cytokine expression through the down-regulation of NF-kappa B activation via suppression of I kappa B alpha and MAP kinase phosphorylation in macrophages.


Subject(s)
Cytokines , Dinoprostone , Down-Regulation , Flowers , I-kappa B Proteins , Interleukin-6 , Inula , Macrophages , Medicine, Traditional , NF-kappa B , Nitric Oxide , Nitric Oxide Synthase Type II , Phosphorylation , Phosphotransferases , Tumor Necrosis Factor-alpha
SELECTION OF CITATIONS
SEARCH DETAIL